3.251 \(\int \cot (c+d x) (a+b \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=117 \[ -\frac{b \left (3 a^2 B+3 a A b-b^2 B\right ) \log (\cos (c+d x))}{d}+x \left (3 a^2 A b+a^3 B-3 a b^2 B-A b^3\right )+\frac{a^3 A \log (\sin (c+d x))}{d}+\frac{b^2 (2 a B+A b) \tan (c+d x)}{d}+\frac{b B (a+b \tan (c+d x))^2}{2 d} \]

[Out]

(3*a^2*A*b - A*b^3 + a^3*B - 3*a*b^2*B)*x - (b*(3*a*A*b + 3*a^2*B - b^2*B)*Log[Cos[c + d*x]])/d + (a^3*A*Log[S
in[c + d*x]])/d + (b^2*(A*b + 2*a*B)*Tan[c + d*x])/d + (b*B*(a + b*Tan[c + d*x])^2)/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.27013, antiderivative size = 117, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.138, Rules used = {3607, 3637, 3624, 3475} \[ -\frac{b \left (3 a^2 B+3 a A b-b^2 B\right ) \log (\cos (c+d x))}{d}+x \left (3 a^2 A b+a^3 B-3 a b^2 B-A b^3\right )+\frac{a^3 A \log (\sin (c+d x))}{d}+\frac{b^2 (2 a B+A b) \tan (c+d x)}{d}+\frac{b B (a+b \tan (c+d x))^2}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]*(a + b*Tan[c + d*x])^3*(A + B*Tan[c + d*x]),x]

[Out]

(3*a^2*A*b - A*b^3 + a^3*B - 3*a*b^2*B)*x - (b*(3*a*A*b + 3*a^2*B - b^2*B)*Log[Cos[c + d*x]])/d + (a^3*A*Log[S
in[c + d*x]])/d + (b^2*(A*b + 2*a*B)*Tan[c + d*x])/d + (b*B*(a + b*Tan[c + d*x])^2)/(2*d)

Rule 3607

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*B*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1))/(d*
f*(m + n)), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[a^2*A*d*(m +
 n) - b*B*(b*c*(m - 1) + a*d*(n + 1)) + d*(m + n)*(2*a*A*b + B*(a^2 - b^2))*Tan[e + f*x] - (b*B*(b*c - a*d)*(m
 - 1) - b*(A*b + a*B)*d*(m + n))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*
c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&
 !(IGtQ[n, 1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3637

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*tan[(e
_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(b*C*Tan[e + f*x]*(c + d*Tan[e + f*x])
^(n + 1))/(d*f*(n + 2)), x] - Dist[1/(d*(n + 2)), Int[(c + d*Tan[e + f*x])^n*Simp[b*c*C - a*A*d*(n + 2) - (A*b
 + a*B - b*C)*d*(n + 2)*Tan[e + f*x] - (a*C*d*(n + 2) - b*(c*C - B*d*(n + 2)))*Tan[e + f*x]^2, x], x], x] /; F
reeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[c^2 + d^2, 0] &&  !LtQ[n, -1]

Rule 3624

Int[((A_) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2)/tan[(e_.) + (f_.)*(x_)], x_Symbol
] :> Simp[B*x, x] + (Dist[A, Int[1/Tan[e + f*x], x], x] + Dist[C, Int[Tan[e + f*x], x], x]) /; FreeQ[{e, f, A,
 B, C}, x] && NeQ[A, C]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \cot (c+d x) (a+b \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx &=\frac{b B (a+b \tan (c+d x))^2}{2 d}+\frac{1}{2} \int \cot (c+d x) (a+b \tan (c+d x)) \left (2 a^2 A+2 \left (2 a A b+a^2 B-b^2 B\right ) \tan (c+d x)+2 b (A b+2 a B) \tan ^2(c+d x)\right ) \, dx\\ &=\frac{b^2 (A b+2 a B) \tan (c+d x)}{d}+\frac{b B (a+b \tan (c+d x))^2}{2 d}-\frac{1}{2} \int \cot (c+d x) \left (-2 a^3 A-2 \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) \tan (c+d x)-2 b \left (3 a A b+3 a^2 B-b^2 B\right ) \tan ^2(c+d x)\right ) \, dx\\ &=\left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) x+\frac{b^2 (A b+2 a B) \tan (c+d x)}{d}+\frac{b B (a+b \tan (c+d x))^2}{2 d}+\left (a^3 A\right ) \int \cot (c+d x) \, dx+\left (b \left (3 a A b+3 a^2 B-b^2 B\right )\right ) \int \tan (c+d x) \, dx\\ &=\left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) x-\frac{b \left (3 a A b+3 a^2 B-b^2 B\right ) \log (\cos (c+d x))}{d}+\frac{a^3 A \log (\sin (c+d x))}{d}+\frac{b^2 (A b+2 a B) \tan (c+d x)}{d}+\frac{b B (a+b \tan (c+d x))^2}{2 d}\\ \end{align*}

Mathematica [C]  time = 0.573259, size = 115, normalized size = 0.98 \[ \frac{2 a^3 A \log (\tan (c+d x))+2 b^2 (2 a B+A b) \tan (c+d x)-(a+i b)^3 (A+i B) \log (-\tan (c+d x)+i)-(a-i b)^3 (A-i B) \log (\tan (c+d x)+i)+b B (a+b \tan (c+d x))^2}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]*(a + b*Tan[c + d*x])^3*(A + B*Tan[c + d*x]),x]

[Out]

(-((a + I*b)^3*(A + I*B)*Log[I - Tan[c + d*x]]) + 2*a^3*A*Log[Tan[c + d*x]] - (a - I*b)^3*(A - I*B)*Log[I + Ta
n[c + d*x]] + 2*b^2*(A*b + 2*a*B)*Tan[c + d*x] + b*B*(a + b*Tan[c + d*x])^2)/(2*d)

________________________________________________________________________________________

Maple [A]  time = 0.08, size = 183, normalized size = 1.6 \begin{align*} -A{b}^{3}x+{\frac{A{b}^{3}\tan \left ( dx+c \right ) }{d}}-{\frac{A{b}^{3}c}{d}}+{\frac{B{b}^{3} \left ( \tan \left ( dx+c \right ) \right ) ^{2}}{2\,d}}+{\frac{B{b}^{3}\ln \left ( \cos \left ( dx+c \right ) \right ) }{d}}-3\,{\frac{Aa{b}^{2}\ln \left ( \cos \left ( dx+c \right ) \right ) }{d}}-3\,Ba{b}^{2}x+3\,{\frac{Ba{b}^{2}\tan \left ( dx+c \right ) }{d}}-3\,{\frac{Ba{b}^{2}c}{d}}+3\,Ax{a}^{2}b+3\,{\frac{A{a}^{2}bc}{d}}-3\,{\frac{B{a}^{2}b\ln \left ( \cos \left ( dx+c \right ) \right ) }{d}}+{\frac{A{a}^{3}\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}+B{a}^{3}x+{\frac{B{a}^{3}c}{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)*(a+b*tan(d*x+c))^3*(A+B*tan(d*x+c)),x)

[Out]

-A*b^3*x+1/d*A*b^3*tan(d*x+c)-1/d*A*b^3*c+1/2/d*B*b^3*tan(d*x+c)^2+b^3*B*ln(cos(d*x+c))/d-3/d*A*a*b^2*ln(cos(d
*x+c))-3*B*a*b^2*x+3/d*B*a*b^2*tan(d*x+c)-3/d*B*a*b^2*c+3*A*x*a^2*b+3/d*A*a^2*b*c-3/d*B*a^2*b*ln(cos(d*x+c))+a
^3*A*ln(sin(d*x+c))/d+B*a^3*x+1/d*B*a^3*c

________________________________________________________________________________________

Maxima [A]  time = 1.51568, size = 167, normalized size = 1.43 \begin{align*} \frac{B b^{3} \tan \left (d x + c\right )^{2} + 2 \, A a^{3} \log \left (\tan \left (d x + c\right )\right ) + 2 \,{\left (B a^{3} + 3 \, A a^{2} b - 3 \, B a b^{2} - A b^{3}\right )}{\left (d x + c\right )} -{\left (A a^{3} - 3 \, B a^{2} b - 3 \, A a b^{2} + B b^{3}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right ) + 2 \,{\left (3 \, B a b^{2} + A b^{3}\right )} \tan \left (d x + c\right )}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

1/2*(B*b^3*tan(d*x + c)^2 + 2*A*a^3*log(tan(d*x + c)) + 2*(B*a^3 + 3*A*a^2*b - 3*B*a*b^2 - A*b^3)*(d*x + c) -
(A*a^3 - 3*B*a^2*b - 3*A*a*b^2 + B*b^3)*log(tan(d*x + c)^2 + 1) + 2*(3*B*a*b^2 + A*b^3)*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 2.14395, size = 305, normalized size = 2.61 \begin{align*} \frac{B b^{3} \tan \left (d x + c\right )^{2} + A a^{3} \log \left (\frac{\tan \left (d x + c\right )^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) + 2 \,{\left (B a^{3} + 3 \, A a^{2} b - 3 \, B a b^{2} - A b^{3}\right )} d x -{\left (3 \, B a^{2} b + 3 \, A a b^{2} - B b^{3}\right )} \log \left (\frac{1}{\tan \left (d x + c\right )^{2} + 1}\right ) + 2 \,{\left (3 \, B a b^{2} + A b^{3}\right )} \tan \left (d x + c\right )}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/2*(B*b^3*tan(d*x + c)^2 + A*a^3*log(tan(d*x + c)^2/(tan(d*x + c)^2 + 1)) + 2*(B*a^3 + 3*A*a^2*b - 3*B*a*b^2
- A*b^3)*d*x - (3*B*a^2*b + 3*A*a*b^2 - B*b^3)*log(1/(tan(d*x + c)^2 + 1)) + 2*(3*B*a*b^2 + A*b^3)*tan(d*x + c
))/d

________________________________________________________________________________________

Sympy [A]  time = 2.698, size = 204, normalized size = 1.74 \begin{align*} \begin{cases} - \frac{A a^{3} \log{\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} + \frac{A a^{3} \log{\left (\tan{\left (c + d x \right )} \right )}}{d} + 3 A a^{2} b x + \frac{3 A a b^{2} \log{\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} - A b^{3} x + \frac{A b^{3} \tan{\left (c + d x \right )}}{d} + B a^{3} x + \frac{3 B a^{2} b \log{\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} - 3 B a b^{2} x + \frac{3 B a b^{2} \tan{\left (c + d x \right )}}{d} - \frac{B b^{3} \log{\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} + \frac{B b^{3} \tan ^{2}{\left (c + d x \right )}}{2 d} & \text{for}\: d \neq 0 \\x \left (A + B \tan{\left (c \right )}\right ) \left (a + b \tan{\left (c \right )}\right )^{3} \cot{\left (c \right )} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*tan(d*x+c))**3*(A+B*tan(d*x+c)),x)

[Out]

Piecewise((-A*a**3*log(tan(c + d*x)**2 + 1)/(2*d) + A*a**3*log(tan(c + d*x))/d + 3*A*a**2*b*x + 3*A*a*b**2*log
(tan(c + d*x)**2 + 1)/(2*d) - A*b**3*x + A*b**3*tan(c + d*x)/d + B*a**3*x + 3*B*a**2*b*log(tan(c + d*x)**2 + 1
)/(2*d) - 3*B*a*b**2*x + 3*B*a*b**2*tan(c + d*x)/d - B*b**3*log(tan(c + d*x)**2 + 1)/(2*d) + B*b**3*tan(c + d*
x)**2/(2*d), Ne(d, 0)), (x*(A + B*tan(c))*(a + b*tan(c))**3*cot(c), True))

________________________________________________________________________________________

Giac [A]  time = 1.8813, size = 174, normalized size = 1.49 \begin{align*} \frac{B b^{3} \tan \left (d x + c\right )^{2} + 2 \, A a^{3} \log \left ({\left | \tan \left (d x + c\right ) \right |}\right ) + 6 \, B a b^{2} \tan \left (d x + c\right ) + 2 \, A b^{3} \tan \left (d x + c\right ) + 2 \,{\left (B a^{3} + 3 \, A a^{2} b - 3 \, B a b^{2} - A b^{3}\right )}{\left (d x + c\right )} -{\left (A a^{3} - 3 \, B a^{2} b - 3 \, A a b^{2} + B b^{3}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

1/2*(B*b^3*tan(d*x + c)^2 + 2*A*a^3*log(abs(tan(d*x + c))) + 6*B*a*b^2*tan(d*x + c) + 2*A*b^3*tan(d*x + c) + 2
*(B*a^3 + 3*A*a^2*b - 3*B*a*b^2 - A*b^3)*(d*x + c) - (A*a^3 - 3*B*a^2*b - 3*A*a*b^2 + B*b^3)*log(tan(d*x + c)^
2 + 1))/d